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Abstract. The physics of solid tumor growth can be considered at three distinct size scales: the 
tumor scale, the cell-extracellular matrix (ECM)  scale and the sub-cellular scale. In this paper we 
consider the tumor scale in the interest of eventually developing a system-level understanding of 
the progression of cancer. At this scale, cell populations and chemical species are best treated as 
concentration fields that vary with time and space. The cells have chemo-mechanical interactions 
with each other and with the ECM, consume glucose and oxygen that are transported through the 
tumor, and create chemical byproducts. We present a continuum mathematical model for the 
biochemical dynamics and mechanics that govern tumor growth. The biochemical dynamics and 
mechanics also engender free energy changes that serve as universal measures for comparison of 
these processes. Within our mathematical framework we therefore consider the free energy 
inequality, which arises from the first and second laws of thermodynamics. With the model we 
compute preliminary estimates of the free energy rates of a growing tumor in its pre-vascular stage 
by using currently available data from single cells and multicellular tumor spheroids. 

 
 
1. Background 
The progression of a tumor involves (a) cell proliferation, (b) cell motility, (c) metabolism by which the 
cells consume glucose and oxygen and create byproducts, (d) mechanical interactions between cancer 
cells, the ECM and surrounding tissues, and (e) mass transport of chemical species to and through the 
tumor. Each of these processes has a physically-distinct contribution to the free energy rate in the 
developing tumor. Complex biophysical interactions between these processes are more broadly 
observable at the tumor scale than in single-cell studies. Additionally, as we demonstrate in this 
communication, tumor scale studies have the potential of identifying the relevant questions regarding 
energy rates that must be considered at the lower, cell-ECM and sub-cellular scales. Using the tumor scale 
studies, it is of interest to track the free energy rates and thereby gain a system-level understanding of the 
processes listed above in developing tumors. More broadly, we argue in the Discussion of this paper that 
there is an interest in combining free energy studies at the tumor, cell-ECM and sub-cellular scales. This 
will reveal how the energetics change with time and state of the tumor between these different scales and 
between the processes underlying tumor growth to affect the progression of the cancer. 
 
1.1 Biochemical dynamics and mechanics of tumors; a role for free energy 
The progression of cancer can be framed in terms of pathways of energy consumption. This idea has been 
applied at the molecular scale to the identification of specific metabolites in the cancer cells, which 
implicates certain pathways of cellular metabolism (Denkert et al., 2008). Whether these pathways are 
normal or altered, the cell directs the associated free energy rates to some of its functions: proliferation, 
motility and mechanical interactions. Conversely, the cell’s chemical stores of energy (in the form of 
ATP) are replenished by glucose metabolism in the presence of oxygen—a process involving mass 
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transport over the extent of the tumor and reactions within its cells. The physics of solid tumors at the 
cell-ECM scale thus comprises a broad range of cellular functions that are not apparent at the sub-cellular 
(e.g., organelle) scale. Additionally, the progression of cancers that produce solid tumors is not 
determined solely by the bio-chemo-mechanics within single cells, or the interactions of a few cells with 
each other and with the ECM. While these local effects are very important, they depend also on spatio-
temporal conditions and cooperative effects that are particularly apparent at the tumor scale. This is one 
reason for the interest in tumor-scale studies of the physics of cancer (Heiden et al., 2009; Kumar & 
Weaver, 2009; Weaver et al.,2009; Paszek et al., 2005; Gatenby & Gillies, 2004; Gordon et al., 2003; 
Guiot et al., 2003; Koike et al., 2002; Bell et al., 2001; Freyer, 1998; Helmlinger et al., 1997; Weaver et 
al., 1997; Casciari et al., 1992; Bourrat-Floecke et al., 1991). At this scale, cells are represented by 
concentration fields. The concentrations increase and decrease (by cell proliferation and death, 
respectively), the cells undergo transport (cell motility), they deposit and degrade the ECM and develop 
mechanical stress (from cell-cell and cell-ECM mechanical interactions). The cells also consume glucose 
and oxygen as well as create by-products, all of which also are represented as concentrations at the tumor 
scale. 
 
There are two main features of tumor-scale physics that have been studied for their influence on the 
progression of the cancer: (a) The biochemical dynamics, by which we mean the changing concentration 
fields of cells, ECM, oxygen, glucose and by-products, which result from the processes of cell 
proliferation and death, cell motility and metabolism (Heiden et al., 2009; Gatenby & Gillies, 2004; Bell 
et al., 2001; Freyer, 1998; Groebbe & Mueller-Klieser, 1996; Casciari et al., 1992; Freyer et al., 1991; 
Bourrat-Floecke et al., 1991; Freyer & Sutherland, 1986, 1985; Franko & Sutherland, 1979; Weinhouse, 
1956; Warburg et al., 1927). (b) The mechanics of interactions among cancer cells and between cells and 
the ECM. The forces involved in these mechanical interactions have been implicated in cell proliferation, 
motility and signaling (Kumar & Weaver, 2009; Butcher et al., 2009; Chang et al., 2008; Suresh, 2007; 
Kaufman et al., 2005; Padera et al., 2004; Gordon et al., 2003; Koike et al., 2002; Helmlinger et al., 
1997). All physical processes at the sub-cellular and cell-ECM scales manifest themselves in either the 
biochemical dynamics (as defined above) or mechanics at the tumor scale, and the operation of all these 
processes involves free energy changes. Therefore, free energy change at the tumor scale is a universal 
measure for quantification and comparison of the physical processes that govern the cancer’s progression 
and perhaps is the only measure that unifies the biochemistry and mechanics of tumor growth.  
 
As the above references suggest, the biochemical dynamics and mechanics of tumors have mostly been 
studied in isolation with a focus on the biochemical dynamics that has only recently begun to yield some 
ground to studies of the mechanics of tumors. There have been only a few studies—all focused on 
mathematical modeling—where these two aspects have been studied in combination (Cristini et al., 2009; 
Frieboes et al., 2006; Zheng et al., 2005; Drasdo & Höhme, 2005; Jackson & Byrne, 2002). None, 
however, has considered the free energy rates associated with the biochemical dynamics and mechanics 
of tumors. 
 
1.2 Studies of the biochemical dynamics of tumor growth 
Experimental studies of the biochemical dynamics of cancer have maintained a focus on cell proliferation 
rates under varying concentrations of glucose, oxygen and H+ ions (Gatenby & Gillies, 2004; Mueller-
Klieser, 2000; Freyer, 1998; Groebbe & Mueller-Klieser, 1996; Casciari et al., 1992; Freyer et al., 1991; 
Groebbe & Mueller-Klieser, 1991; Tannock & Kopelyan, 1986; Mueller-Klieser et al., 1986; Sutherland 
et al., 1986; Freyer & Sutherland, 1986, 1985; Franko & Sutherland, 1979; Warburg et al., 1927) and in 
some instances, of lactate (Bourrat-Floecke et al., 1991). While there have been a few in vivo studies 
among them, the majority of these studies have used multicellular tumor spheroids—an in vitro cancer 
model corresponding to initial pre-vascular or inter-vascular microregions of in vivo tumors. Tumor 
spheroids derived from chosen cancer cell lines have been grown from sizes of ~50 μm in growth medium 
perfused with glucose and oxygen. After an initial exponential growth phase (so-called because the cell 
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count increases exponentially in time), the size reaches a plateau resulting in a characteristic sigmoidal 
shape of the size vs. time curve, which has been represented by an empirical fit termed the Gompertzian 
equation (Gompertz, 1825).  
 
The sigmoidal shape of growth curves has been of interest to theoretical biologists. On the basis of 
hydrodynamic scaling laws and fractal branching of the terminal vasculature, West et al. (2001, 2002) 
proposed that the total metabolic rate of an organism is proportional to the 3/4th power of its mass, and 
derived growth laws that can match the time progression of the size of biological systems across many 
orders of magnitude. Guiot et al. (2003) demonstrated that these growth laws are able to represent the 
sigmoidal growth curves of tumors. While it is an elegant approach that is also energy-based, this scaling 
law applies to the tumor as a whole. It therefore does not shed light on the detailed distribution of free 
energy rates between the many tumor-scale processes that we have described in Section 1.1 and that 
govern the physics of cancer. Focusing on these physical processes, however, it has been shown (see the 
references at the beginning of the previous paragraph) that the plateau in growth is reached because, as 
the tumor spheroid grows, the biochemical dynamics become diffusion-limited: glucose and oxygen do 
not diffuse rapidly enough to the center to supply the cells as they continue to deplete these chemicals by 
metabolic activity. The cells slip into a quiescent state and eventually die, forming a necrotic core, 
typically when the tumor spheroid has attained a diameter of ~500 μm. This is the end of the exponential 
growth phase. The tumor spheroid’s size grows at a vanishingly small rate as the net cell proliferation rate 
tends to zero. For spheroids derived from different cell lines, but growing in the same environment (in 
terms of availability of nutrients and stiffness of surrounding media), this limiting size is determined by 
the cell type (Folkman & Greenspan, 1975). The next stage of tumor progression in vivo is 
vascularization, which gives the tumor a new lease on life as newly-formed blood vessels begin to supply 
glucose and oxygen to the cells. 
 
1.3 The lately-emerging mechanics of tumors 
Evidence that mechanics also affects the tumor’s progression has appeared more recently. Helmlinger et 
al. (1997) found a suppression of growth of tumor spheroids derived from colon cancer LS174T cells 
when subjected to compressive stress by an encapsulating hydrogel. In a follow-up study Koike et al. 
(2002) demonstrated that externally-applied mechanical stress aids the formation of multicellular tumor 
spheroids in the highly metastatic Dunning R3327 rat prostate carcinoma AT3.1 cells, while the less 
metastatic AT1 cells formed spheroids even without the applied stress.  
 
Chang et al. (2008) showed that in four different cell lines shear stress led to cell cycle arrest in the G2/M 
phase. This result was associated with increased expression of cyclins B1 and p21CIP1, and decreased 
expression of cyclins A, D1 and E, cyclin-dependent kinases (cdk) -1, -2, -4, -6 and p27KIP1, as well as 
decreased cdk-1 activity.  Reviews by Kumar & Weaver (2009), Butcher et al. (2009) and Suresh (2007) 
have pointed to the decreased stiffness and altered cytoskeletal rheology of cancer cells from several 
different cell lines when compared with normal cells. These phenotypes promote greater motility and 
therefore probably favor metastasis of the cancer.  
 
Cells also impose traction forces on the ECM, and Gordon et al. (2003) found that larger traction forces 
near the edge of tumor spheroids with the human U87MGmEGFR glioblastoma cell line led to greater 
depths of invasion into the ECM. Many cell types form focal adhesions with the ECM, and the force 
developed in the actin cytoskeleton is regulated by a dynamic interaction between focal adhesions, the 
cytoskeleton and the ECM (Geiger & Bershadsky, 2001, and references therein). It is hypothesized that 
the force so-developed regulates the expression and activity of many proteins by mechanisms that are yet 
undiscovered, and that this chemo-mechanical regulation may influence the chemical signaling in cancer 
cells (Kumar & Weaver, 2009, and references therein). Butcher et al. (2009) have also pointed to altered 
“mechanoreciprocity” (the development of force within the cell in response to ECM-imposed strain) by 
which higher-than-normal forces are applied to cell-cell junctions causing them to lose their integrity, 
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thereby aiding in tissue invasion. Weaver et al. (1997) found that mechanical interactions between 
integrins and the ECM altered the phenotype of human breast cancer cells and that under certain 
interventions these cells reverted to the normal phenotype. Padera et al. (2004) demonstrated that 
mechanical stress created by growing tumors compresses blood vessels supplying the tumors and thereby 
interferes with the delivery of both nutrients and drugs. 
 
The physical processes that manifest themselves in the biochemical dynamics and mechanics of tumors 
are of interest because they have all been found to influence the progression of the cancer. Our aim is to 
study them in the context of the free energy changes that are caused by these processes. Toward this goal, 
Section 2 provides an outline of our mathematical models of these processes at the tumor scale and the 
theoretical basis for considering the associated free energy rates. Section 3 is a brief discussion of the 
experiments that we have initiated to support the computational studies. Section 4 presents computational 
studies that serve as preliminary estimates of free energy rates in a growing, pre-vascular tumor. A 
discussion and conclusions are presented in Section 5. 
 
 
2. The continuum model for the physics of growing tumors  
Our mathematical formulation for the physics of tumor growth is drawn from a broader treatment that we 
have developed for the growth and remodeling of biological tissue. It is based on the continuum theory of 
mixtures and has been detailed in Garikipati et al. (2004, 2006) and Narayanan et al. (2009).  
 
2.1 The biochemical dynamics of tumor growth 
The biochemical dynamics of the tumor are governed by a system of coupled reaction-transport partial 
differential equations (PDEs) for the concentrations of cells cρ , ECM eρ , oxygen oρ  and glucose gρ .  

)( ccc
c

D
t

ρπρ
∇−⋅∇−=

∂
∂

                (1) 

e
e

t
πρ

=
∂

∂
                  (2) 

)( ooo
o

D
t

ρπρ
∇−⋅∇−=

∂
∂

                (3) 

)( ggg
g

D
t

ρπρ
∇−⋅∇−=

∂
∂

                (4) 

Here, Dα is the diffusivity of the corresponding species, where α = c, o or g. The diffusive term in 
Equation (1) models the random motion of cells in the absence of a chemotactic or haptotactic driving 
force.6 In Equation (2) the ECM does not undergo transport, while in Equations (3) and (4) oxygen and 
glucose, respectively, undergo diffusive transport. Source terms modeling the proliferation rate of cells, 
the ECM production rate, and the consumption rates of oxygen and glucose, are oec πππ −,,  and gπ− , 
respectively. 
 
The cell proliferation rate (expressed as a mass rate per unit volume with units of mg-cc-1-sec-1) has been 
chosen to model the initial, exponential stage of tumor growth.  

                                                 
6 Directed motion of the cells can arise under a chemotactic driving force that causes them to migrate away from a 
toxic by-product, in the direction of the vascular supply, or toward nutrients. Alternately, haptotaxis may influence 
them to migrate toward a more abundant ECM. These responses are, however not observed in the early, pre-vascular  
and pre-necrotic stages that we are considering in this work. Mathematically-speaking, chemotactic and haptotactic 
cell motion would be modeled by convection terms in Equation (1). 
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where c
0ρ is the initial cell concentration, tD is the cell doubling time, τ = tD/log 2, and J is the ratio by 

which an infinitesimally-small volume of the tumor has deformed and grown. This last factor has been 
made more precise in the discussion of mechanics that follows in Section 2.2. The cell doubling time is 
dependent on the oxygen and glucose concentrations (Casciari et al., 1992), and the pH (

+Hρ ) of the 
medium (Casciari et al., 1992; Bourrat-Floecke, 1991). We have used the equation proposed by Casciari 
et al., (1992) for tD as a function of go ρρ , and 
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where opt
Dt is the optimal doubling time found to be attained at 31079.1 −×=oρ mg-cc-1,  99.0=gρ mg-

cc-1 and 81062.5 −×=
+Hρ mg-cc-1 (pH = 7.25). Equation (6) was compared with data in Freyer & 

Sutherland (1985, 1986) in addition to those in Casciari (1992). A least squares fit returned a value of R2 
= 0.75. While in Casciari et al. (1992) 11=opt

Dt hours, we have left this factor as a parameter to match our 

preliminary tumor spheroid growth experiments (see Section 3.1). Note that, at fixed
+Hρ , the time 

required for doubling the number of cells becomes unbounded as 0, →go ρρ , implying that the cell 
proliferation rate, 0→cπ . The vanishing oxygen and/or glucose concentration provides a basis for 
modeling cell necrosis as we discuss later. While Casciari et al (1996) used fixed values of go ρρ , over 
the tumor spheroid in their experiments, we have assumed that Equation (6) holds pointwise over the 
tumor spheroid. Importantly, as go ρρ , vary with time and space, the calculated cell doubling time also 
varies. The optimal doubling time, opt

Dt , however, is fixed for a chosen cell line. 
 
The ECM production rate has been modeled to be proportional to the cell concentration: 

ce Aρπ = ,                  (7) 
with A being a constant of proportionality. 
 
The oxygen and glucose consumption rates also were adapted from Casciari et al. (1992) to be consistent 
with the different units used here, and scaled by the local cell concentration to be expressed as mass rates 
per unit volume. The resulting rate functions take on field values that vary over time and space, and have 
the forms: 
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with units of mg-cc-1-sec-1. The dependence of oπ on oρ , and of gπ on gρ is “Michaelis-Menten-like”, 
giving rates that vary monotonically from zero to a maximum asymptotic value as the respective 
concentrations increase from 0, =go ρρ . Also note that oπ is inversely proportional to gρ , and gπ is 
inversely proportional to oρ . These trends are reflected in the data of Freyer & Sutherland (1985, 1986) 
and Casciari et al. (1992).  
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2.2 Mechanics of the tumor 
The PDEs for reaction-transport of cells and ECM are coupled with the quasi-static balance of momentum 
that governs the mechanics of the tumor. For the purpose of mechanics the tumor is treated as a soft 
material consisting of cells and ECM. The PDE for quasi-static balance of momentum is: 

,0=⋅∇ σ                 (10) 
whereσ is the Cauchy stress, having a passive viscoelastic contribution from the mechanical response of 
the ECM and cells, and an active contribution due to cell traction. The total stress is therefore written 
as, avel σσσσ ++=  the subscripts denoting “elastic”, “viscous” and “active”, respectively.  
 
The deformation gradient tensor is XuIF ∂∂+= , where I is the second-order identity tensor, u is the 
displacement vector and X is the reference position. The ratio of current (deformed and grown) to 
reference (undeformed and initial) volume is J = detF. Since deformation results from both elastic strain 
and growth, we can write grel FFF = , where Fgr is an isotropic tensor and represents the kinematic 
growth caused by cell proliferation and ECM deposition. Accordingly we write 
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where c
0ρ is the initial cell concentration and e

0ρ  is the initial ECM concentration. We also define the 
volume change ratio due to elastic strain, Jel = detFel 
 
The elastic part of the stress is obtained from the standard relation for a hyperelastic 
material T

elelelel FCWFJ )/(1 ∂∂= −σ , where W is the Mooney-Rivlin strain energy function and C is the 
elastic right Cauchy-Green tensor at a given material point. These quantities are related to the deformation 
of the solid tumor as )(CWW = , where el

T
el FFC = . Specifically, the Mooney-Rivlin model is 
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Here κ and μ and are, respectively, the bulk modulus and shear modulus, the latter in the limit of 
infinitesimal strain, and 1I is the first principal invariant of CJC el
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viscous stress is written as  
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where Q is a stress-like quantity that is governed by the ordinary differential equation 
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with τ being an intrinsic relaxation time, and )3(
2
1

1 −= IW μ . For the tumor growth phenomena that 

will be studied with this model, the strain rate is set by the rate of volume growth, which happens over a 
time scale of 1—30 days. This rate therefore is of the order of 10-7 sec-1. In contrast, typical relaxation 
times of soft tissue are in the range of 1000 sec, giving a larger intrinsic rate of 1/τ ~ 10-3 sec-1. The 
viscous effects are therefore negligible, and the viscous stress, vσ , has been set to zero in this model. 
Similarly, we have also found that the intrinsic rates of the gels that encapsulate tumor spheroids in our 
preliminary experiments are large compared with the strain rates due to growth, lending further support to 
the neglect of viscous effects in tumor growth phenomena (see Section 3.2). 
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The active stress arises due to the tensile traction imposed by the cells on the 
ECM, Icc

a
3/2

max )/( ρρβσ = , which is isotropic, as indicated by the second-order identity tensor, I, 
with β being a measure of the maximum traction developed. The exponent of 2/3 converts the volume 
concentration ratio to an area concentration ratio. According to this model an isotropic stress β is 
developed at cc

maxρρ = . The value of β has been determined from the stress of 5.5 kPa measured on 
focal adhesions (Balaban et al., 2001). This value was scaled up geometrically by accounting for the 
typical numbers and sizes of focal adhesions in cells to obtain our estimate for β . Table 1 lists additional 
parameters used in the model, with citations or remarks on how the corresponding parameter was 
obtained. 
 
2.3 Free energy rates in the growing tumor 
Our mathematical model extends to the thermodynamics, which encompasses effects arising from the 
biochemical dynamics and mechanics of the tumor. The application of the first and second laws of 
thermodynamics to our mathematical model leads to an inequality that governs the free energy rates of the 
growing tumor. The derivation has been detailed in Garikipati et al. (2004, 2006) for tissue undergoing 
growth and remodeling.: 
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Here, αψ  is the free energy per unit mass of the constituent α (=c, e, o, g), c
chemψ is the chemical free 

energy of the cells,7 11 −−= elgrgrelgr FFFFd &  is the rate of deformation tensor due to growth, and ccvρ  is 

the flux of motile cells given by cccc Dv ρρ ∇−= . The mass-specific chemical free energy of cells 
changes at a rate given by  

c

gg
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chem mB

ρ
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where the Bcell is a constant metabolic power output for all mammalian cells in culture as shown in West 
et al. (2002) and cellm is mass of a single cell (see Table 1 for values). The second term in (16) is exactly 
the rate at which chemical energy is extracted by consuming glucose. By adopting this form we have 
assumed that the energy gained from glucose is stored in the cells without losses. 
 
The first term on the left hand-side of the free energy inequality represents the rate at which chemical free 
energy density is changing due to usage and storage within the cells. The remaining terms are, 
respectively, the free energy density rates due to cell proliferation, ECM production, tumor growth 
against stress, cell motion, and due to consumption of glucose. The inequality requires that the sum of 
these rate terms be negative, meaning that the total free energy density is decreasing. Each of the terms in 
the free energy inequality can be computed from our model using experimentally-determined parameters 
that represent a specific tumor cell line, the environment of the tumor cells (such as whether they form a 
tumor spheroid surrounded by a gel, as in Section 4), and initial and boundary conditions. The evaluation 
of these terms provides a quantitative comparison of the free energy rates that occur in these distinct 
tumor-scale processes. As mentioned in Section 1, we emphasize that the biochemical dynamics and 
mechanics of the tumor are subjected to unified treatment in this comparison of free energies.  
 
It also is useful to rewrite (15) as  

ggccc
gr

eeccc
chem

c vd ψπψρσψπψπψρ −⋅∇−≤++ :&                 (17) 

                                                 
7 For the physical processes considered here, the total free energy is the sum of the chemical free energy and the 
mechanical strain energy. 
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If the mechanical power represented by the first term on the right hand-side is positive in sign, the 
corresponding free energy change is not stored, and therefore represents a mechanism of dissipation. If 
the change in free energy represented by the rate ccc v⋅∇− ψρ  is negative, it also represents a 
dissipative mechanism. A positive value of ggψπ− represents the energy extracted by consuming 
glucose. The left hand-side represents mechanisms of energy storage. In this form, therefore, the 
inequality specifies that the rate of free energy storage is less than the rate of energy loss due to 
dissipation and glucose consumption.  
 
2.4 Numerical implementation of the mathematical model 
The five coupled PDEs (1—4) and (10) are solved by the finite element method. Several mathematical 
complexities can arise in the solution of this coupled system of PDEs, and we have discussed their 
treatment at length in Narayanan et al. (2009). Briefly, the reaction-transport PDEs are integrated in time 
by the midpoint rule. A mixed finite element method employing the displacement-pressure formulation 
has been used for the mechanics of the soft, nearly-incompressible tumor. Of special relevance to this 
study has been the need to rapidly test formulations with different forms of the PDEs, response functions 
and constitutive models, and for a range of initial and boundary conditions. For this purpose we have 
adopted the multiphysics modeling code, Comsol.8 A typical computation with ~5000 finite elements run 
to 20 days of physical time took 2 hours of wall time to run on an IBM Thinkpad T43 laptop with 2 GB 
RAM and a processor speed of 2 GHz.. 
 
3. Experimental methods 
Experimental work with cancer cells and the tumor spheroids that they form will provide the values for 
the essential parameters of our model.  While data are available for certain aspects of chosen cell lines 
and tumor spheroid systems, there is a need for comprehensive data that are consistent in the sense that 
they are obtained for the same cell line(s) and tumor spheroid system(s).  Preliminary experimental work 
has included the optimization of tumor spheroid production, the seeding of the resulting tumor cells in 
hydrogels, and the observation of the subsequent growth of the tumors over time periods up to one month. 
The tumor spheroids have been grown in hydrogels of various concentrations and we have probed the 
gels’ mechanical properties.  
 
3.1 Cancer cell culture maintenance, tumor spheroid production, and growth 
For preliminary experiments, we have chosen to work with three different adherent epithelial cancer cell 
lines: human colon adenocarcinoma (LS174T), human cervix carcinoma (HeLa), and human breast 
adenocarcinoma (MCF-7).  Cell subculturing, prior to tumor spheroid production is carried out in tissue-
culture flasks with a cell attachment-treated surface area of 75 cm2. The different culture conditions used 
for each cell line are as follows.  For LS174T cells: BioWhittaker EMEM (Lonza) containing L-glutamine 
plus an additional 10% fetal bovine serum (FBS), 1% NEAA, 1% penicillin and 1% streptomycin (1% 
P/S). For HeLa cells: GIBCO RPMI 1640 (Invitrogen) containing L-glutamine plus an additional 10% 
FBS and 1% P/S.  For MCF-7 cells: GIBCO DMEM (Invitrogen) containing 4.5 g/L glucose plus an 
additional 10% FBS and 1% P/S.  Cells are detached from the tissue culture flask surface prior to growing 
to confluence using GIBCO trypsin EDTA (0.05%, Invitrogen) and either split or transferred to an 
experimental platform. Cells being maintained in culture conditions or during experiments are stored in 
incubators with a controlled environment of 37°C, high humidity, and 5% CO2.  
 
In all experiments, tumor spheroid formation is initiated using the hanging drop method.  Cells are 
suspended in their culture medium at a concentration of 5000 cells-cc-1.  Drops of 6.5 μl, containing the 
cell suspension, are placed with a pipette on the underside of the cover of a Petri dish and the cover is 
then inverted and replaced on the dish. Gravity and the surface tension of the liquid confine the 
                                                 
8 www.comsol.com 
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approximately 10-50 cells per drop to a small quasi-spherical volume where the formation of cell-to-cell 
attachments is encouraged.  The time necessary for the formation of an agglomerate of cells, which 
adhere to each other and produce their own ECM, within the drops is cell-line dependent. For example, 
LS174T cells form spheroids within approximately 12 hours, whereas MCF-7 cells require 2-3 days.    
 
Spheroids are transferred into agarose hydrogels using a gel overlay method. Agarose hydrogels, in 
varying concentrations of agarose, provide different levels of 3D mechanical support for the tumor 
spheroids without biochemical interactions between the tumor cells and their environment.  Whereas 
tumor-environment interactions are important, in the initial stages of our study we seek to restrict the 
energy flow to only mechanical interactions with the environment and processes internal to the tumor 
spheroid. By doing this, we can concentrate on identifying the effects of nutrition (i.e., oxygen and 
glucose) and stiffness of the environment without the confounding effects of an additional set of ECM 
molecules.  In later phases of this research, adhesive and interactive 3D environments will provide 
additional insights on the very important biochemo-mechanical feedback that a tumor has with its 
surrounding ECM.  For preparation of the hydrogels, the appropriate amount of agarose powder is mixed 
with deionized water and heated in a microwave oven to fully dissolve the powder and create a stock 
solution of 2.0 wt.% agarose hydrogel.  When the agarose stock solution has cooled to at least 37°C it is 
mixed with cell-culture medium in order to obtain the desired final agarose concentration.  A thin layer 
(approximately 2 mm thick) of un-gelled agarose and cell-culture medium solution is then placed in the 
bottom of a cell culture well. Shortly before the agarose forms into a gel, the spheroids are individually 
transferred just under the surface of the gel using a 10 μl pipette tip.  To ensure complete coverage of the 
spheroid, an additional layer of un-gelled agarose solution is placed on top of the first.   The agarose is 
allowed to gel at room temperature for 20 minutes after which cell culture medium is added to each well.  
 
After the spheroids have been seeded in the gels, we have either continuously monitored the development 
of single tumor spheroids for time periods up to one week or, for more long-term statistical data, acquired 
images of many tumor spheroids (approximately 20 per experiment) at 48-hour intervals for up to one 
month.  Continuous monitoring is performed on an inverted microscope (Zeiss Axiovert 200) using phase 
contrast and DIC techniques with images being captured every 15 minutes.  An incubator housing is 
placed over the stage of the microscope to maintain a humid environment at 37°C and 5% CO2. 
 
Preliminary experiments have shown that the LS174T cell line agglomerates readily and rapidly to form 
spheroids under the growth conditions described above.  In a typical, successful experiment where the 
development of the tumor was monitored continuously, an LS174T tumor grew from a radius of ~50 μm 
to ~200 μm over 7 days, a quadrupling of the radius. Assuming uniform cell concentration in the spheroid 
this corresponds to an increase in number of cells by a factor of 64 (26), which corresponds to 6 doublings 
of the cell population in 7 days or a doubling time tD ~1.16 days. Figure 1 shows a sequence from one of 
our preliminary tumor spheroid growth experiments. The growth conditions for oxygen and glucose 
corresponded to initial and boundary values 310336.7 −×=oρ mg-cc-1 (equilibrated with partial pressure 
corresponding to 20% oxygen) and 99.0=gρ mg-cc-1. This value of oρ is ×5 the optimal value found 
by Casciari et al. (1992) and the value of gρ is optimal. For our preliminary studies we have assumed that 
the doubling time is also optimal with respect to oxygen. On this basis we have used an optimal cell 
doubling time of 16.1=opt

Dt days. 
 
3.2 Hydrogel characterization 
As previously mentioned, the medium with which we embed agglomerates of cancer cells for the growth 
and characterization of tumor spheroids is agarose hydrogel (Type VII, Low gelling temperature, Sigma 
Chemical Co., St. Louis, MO, USA), in concentrations of 0.5 – 2% (wt·vol-1) agarose. The mechanical 
properties of agarose hydrogels are sensitive to supplier, type, and preparation method (Dong, et al. 2007; 
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Lou & Shoichet, 2004; Stolz, 2004).  Additionally, initial experiments show that the behavior of agarose 
is rate dependent, likely due to viscoelastic contributions of the polymer and poroelastic effects of the 
hydrating fluid.  Characterization of the macroscopic mechanical behavior of hydrated agarose gels is 
being carried out with unconfined compression and stress relaxation tests using an MTS NanoBionix Test 
System.   
 
Unconfined compression and stress relaxation are performed between aluminum platens: one platen is 
fitted with a Plexiglas cylinder containing the agarose sample submerged in a bath of hydrating fluid. A 
brief description of sample preparation for mechanical testing of agarose gels is as follows. After gelling 
is complete, cylinders are stamped out of approximately 2 mm-thick sheets using the large-diameter end 
of a Pasteur pipette.  The resulting nominal diameter of the agarose cylinders is 5 mm. The top platen 
compresses the gel with strain rates between 1 ×10-4 sec-1 and 1×10-3 sec-1 to maximum strains between 5 
and 20% at which point the crosshead displacement is halted and the stress is continually measured for an 
additional two minutes before unloading at the same rate. 
 
From our preliminary mechanical characterization of the gels we have obtained apparent moduli of the 
order of 1—25 kPa with a recognizable strain rate effect (see Table 2). We also found relaxation times of 
~200 sec in the stress relaxation tests on gels. This corresponds to intrinsic rates of ~0.005 sec-1 which are 
many orders of magnitude greater than the growth-induced volume strain rate of ~10-7 sec-1. For this 
reason we have neglected the viscous effect in gels for our computations as indicated in Section 2.2, and 
guided by our preliminary experimental results presented in Table 2, we have estimated a value of 6 kPa 
for the Young’s modulus of 2% agarose gels for small strains. Since the gels have a high water content 
(98-99.5%), they are found to be nearly incompressible, which we have modeled by taking the Poisson 
ratio to be 0.49 in the small strain regime. This gives a bulk modulus κ = 100 kPa and shear modulus  μ = 
2013 Pa (see Table 1). 
 
4. Numerical estimates of free energy rates 
Figure 2 introduces the reader to the main fields that are solved for in the formulation of initial and 
boundary value problems (IBVPs) of tumor physics. The computation is of a growing tumor spheroid, 
shown here after 20 days of growth, encapsulated by a gel. The parameters used in this computation 
appear in Table 1. The extent of the tumor spheroid is revealed by the central, high concentration of cells. 
The initial distribution of cρ is uniform at 510 mg-cc-1 (equivalent to 170 cells in a volume 
100 ×100 ×100μm-3) over the tumor spheroid. The higher values of cρ after 20 days of growth imply a 
higher cell packing density by a factor of ~ 6.2 , corresponding well with the observations of Helmlinger 
et al. (1997). Outside of this high concentration lies the encapsulating gel where cρ decreases sharply to 
close to zero. This introductory computation shows that the spheroid has grown to a radius of ~120 μm 
(demarcated by the central high values of cρ ) over 20 days ( 610728.1 ×  sec) starting from a radius of 
50 μm as the cells produce ECM and proliferate to fill the newly laid down matrix.9 As a result the gel 
has been deformed. The cells also consume oxygen and glucose. The initial distributions of oxygen and 
glucose were uniform over the tumor spheroid and gel: 41042.7 −×=oρ  mg-cc-1, which is ~10% of the 
value in our preliminary experiments. The oxygen concentration in our experiments was equilibrated with 
the partial pressure of 20% oxygen in gas, which corresponds with the partial pressure of oxygen in the 
                                                 
9 In the computations the tumor spheroid has grown to a lesser extent than in our exemplary preliminary experiment 
with LS174T cells. More experiments are needed, however, to obtain statistical error bounds on growth rates. Also 
note that the oxygen concentration in the computations was ~10% of the experiments, which leads to a lower growth 
rate according to Equation (6). A 2% agarose gel was modeled in the computations instead of the 0.5% agarose gel 
in the tumor spheroid growth experiments. The stiffer gel in the computations also produces a greater elastic 
constraint on growth of the tumor spheroid. 
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atmosphere. The lower oρ was chosen for the computations because oxygen concentrations in tissues are 
usually found to be at most 20% of the value that equilibrates with the partial pressure of oxygen in the 
atmosphere. The initial glucose concentration was 99.0=gρ mg-cc-1, the same value as in our 
preliminary experiments. These concentration values were maintained as boundary conditions at the outer 
surface of the gel. Many studies were carried out, of which we have presented only the most relevant 
results here and in the parametric studies that follow. 
 
The computation proceeds with diffusion and consumption of oxygen and glucose, cell proliferation and 
ECM production, and the resultant growth of the spheroid. Oxygen and glucose are depleted by the cells 
as shown by the upper surface plot of oρ  and gρ . By 20 days oρ and gρ remain high only in an outer rim 
of cells, and decrease toward the center. As discussed in Section 1, the depletion of oxygen and glucose 
has been found to influence the onset of necrosis in experiments on tumor spheroids (Gatenby & Gillies, 
2004; Bell et al., 2001; Mueller-Klieser, 2000; Freyer, 1998; Groebbe & Mueller-Klieser, 1996; Casciari 
et al., 1992; Freyer et al., 1991; Tannock & Kopelyan, 1986; Mueller-Klieser et al., 1986; Sutherland et 
al., 1986; Freyer & Sutherland, 1986, 1985; Franko & Sutherland, 1979; Warburg et al., 1927). Later in 
the paper we show a more pronounced depletion of oxygen and glucose in a computation that models 
more aggressively proliferating cells at a later time in the spheroid’s growth. 
 
Figure 3 shows the sum of the rate quantities that make up the left hand-side of the free energy inequality 
(15) for the case modeled in Figure 2. Recall that each term is the rate of change of free energy density 
from a specific mechanism as discussed in Section 2.3. This sum of the rates is negative at all points over 
the tumor spheroid and gel, indicating a decrease of free energy density in accordance with the free 
energy inequality. Note the order of magnitude difference in the rate of change of the free energy density 
between the tumor spheroid and gel. This difference is related to the cell distribution, which is high in the 
tumor spheroid but drops sharply to zero in the gel. Consequently, all cellular physical processes are 
significant only in the tumor spheroid, and comparatively negligible in the gel.10 Diffusive transport of 
oxygen and glucose, and mechanical deformation are the only physical processes of significance in the 
gel. Due to the uniformity of oρ and gρ over the gel, the mass-specific free energy densities of oxygen 
and glucose are also uniform, and the change in free energy density due to their diffusion can be 
neglected. Since cρ drops sharply to a very low value in the gel, the growth rate is negligible there, and 
the change in free energy density associated with growth against stress is also negligible over the gel. 
 
The surface plots in Figures 4a—4f are distributions of each of the six rate terms that make up 
Inequalities (15) and (17). The signs of the terms are consistent with (15). Figure 4a shows that the rate of 
change of chemical free energy density in the cells, c

chem
cψρ & , is negative everywhere in the tumor 

spheroid meaning that the chemical free energy density of the cells is being continually depleted to fuel 
tumor growth, cell motion, and deformation of the tumor spheroid and gel. Figures 4b and 4c show that 
the free energy density rates due to cell proliferation, ccψπ , and due to ECM production, eeψπ , 
respectively, are positive in the tumor spheroid since energy is being stored in the newly-formed cells and 
ECM, and that these terms vanish in the gel where cell proliferation and ECM production are absent. 
From Figure 4d we see that grd:σ− , is positive over the tumor spheroid as cell proliferation and ECM 
production ensure a positive growth rate (increase in mass with associated swelling) while the stress is 
compressive (trace of the stress tensor is negative) due to the mechanical constraint of the gel. Therefore, 
the associated change in free energy density is stored, not dissipated as it would be if grd:σ− were 

                                                 
10 Recall that the cells have no interactions with the agarose hydrogel, which they would if a collagen gel or matrigel 
were used instead. 
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negative (equivalently, if grd:σ were positive as discussed in Section 2.3). This rate vanishes over the 
gel due to the absence of growth there. The rate of change of free energy density due to cell motion, given 
by ccc v⋅∇ψρ in (15), however, is positive, and therefore dissipative as shown in Figure 4e. Its 
contribution to the rate of change of free energy density is close to zero everywhere except for a rim of 
motile cells at the tumor-gel interface, where it is negative as the cells move downhill over their own free 
energy landscape. Figure 4f shows the rate of change of free energy density due to glucose consumption, 

ggψπ . The negative values over the tumor spheroid indicate that glucose is being consumed, but the rate 
decreases sharply to zero over the gel where glucose undergoes diffusion but no consumption. 
 
It also is instructive to compare the magnitudes of the various free energy storing and dissipating 
mechanisms that have been illustrated in Figure 4. Particularly noteworthy is that the rate of change of the 
chemical free energy of cells ( c

chem
cψρ & ), rate of free energy storage in newly-formed cells and ECM 

( ccψπ  and eeψπ , respectively), and the rate at which free energy is drawn from glucose ( ggψπ ) are the 
same order of magnitude and comparable to each other. This suggests that the (mainly) biochemical 
processes associated with the cancer’s dynamics are relatively close to being balanced as they 
interconvert free energy. We recall the basis on which these terms were modeled: The chemical free 
energy rate in the cells, c

chemψ& was adopted from the value noted for metabolic power output of mammalian 
cells in culture by West et al. (2002) and the power drawn from glucose consumption; see Equation (16). 
Our models for the source terms cπ and gπ were abstracted from the work of Casciari et al. (1992) on 
EMT6/Ro mouse mammary tumor cells, as discussed in Section 2.1, where we also explained our model 
for eπ . The elastic moduli, κ and μ that parameterize the Mooney-Rivlin strain energy density function, 
W, for the tumor spheroid were based on estimates for moduli of cells in Suresh (2007) that were 
extended by assuming elastic incompressibility of the tumor spheroid. The same were assumed for the 
gel, and were in good correspondence with our initial measurements of the mechanical properties of gels 
See Section 3.2 and Table 1. The total free energy density of cells was written as  

Wec

c
c
chem

ccc

ρρ
ρψρψρ
+

+= ,              (18) 

with West et al.’s (2001) estimate of the chemical energy content of a single mammalian cell being used 
to specify c

chemψ . For the ECM, however only the strain energy density was included:  

Wec

e
ee

ρρ
ρψρ
+

= .                (19)  

The well-known free energy of glucose metabolism was used to specify gψ (Table 1).   
 
Also of note is that the rate of free energy density storage due to growth against stress grd:σ− is three 

orders of magnitude smaller than the terms c
chem

cψρ & , ccψπ , eeψπ and ggψπ , all of which involve some 
biochemical processes. This suggests that the mechanical processes that take place in growing tumors are 
highly energy efficient compared with the biochemical ones. The free energy dissipated during cell 
motion, ccc v⋅∇ψρ , is even smaller because the cell diffusivity, Dc=10-16 m2-sec-1, which has been 
assumed for these cells results in very slow cell motion. Over a day the random motion of motile cells 
will cause them to displace an average of 7.2 μm.11 

                                                 
11 At this low value the cell diffusion term in Equation (1) could be neglected. Instead we have relied on the 
computations to attain the limits of low- and high-motility cells. 
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4.1 Parametric studies 
We next considered parametric variations to model biophysically relevant perturbations to the tumor 
spheroid-gel system. Plots of these results have not been shown here for the want of space, but the 
essential findings are discussed. The first of these parametric variations is a five-fold increase in cell 
doubling time, tD to model the effect of a gene knockout that transforms the cells into a very slowly 
proliferating phenotype. For this Equation (6) was simply modified by a constant multiplicative factor. 
The cancer cells proliferate much more slowly to the extent that, at 20 days, cρ is approximately half of 
that in Figure 2. Less ECM is also produced. The more sparsely cellular tumor spheroid consumes 
correspondingly less glucose. 
 
For this model of a tumor with less proliferative cells we have re-computed the different contributions to 
the free energy inequality. The rate of change of chemical free energy density in the cells, c

chem
cψρ & , is 

scaled down by a factor of 3, while the rate of change of free energy density due to ECM production, 
eeψπ , and the rate of consumption of the free energy density in glucose, ggψπ , are scaled down by a 

factor of approximately 2, influenced mainly by the decreased cell concentration. The decrease in growth 
rate also causes less free energy storage by the stress power mechanism, grd:σ− , attenuating it by a 
factor of approximately 3. The most strongly affected terms, however, are the rate of storing free energy 
in newly-formed cells, ccψπ , and the dissipation of free energy by cell motion, ccc v⋅∇ψρ . The 
increased cell doubling time translates to an exponential decrease in cπ  [see Equation (5)], which with 
the coupling of cρ and gρ  via the cell proliferation and glucose consumption terms, cπ and gπ , 
respectively [Equations (5,6,9)], causes an order of magnitude decrease in ccψπ and a 20-fold decrease 
in ccc v⋅∇ψρ . Notably, the dramatic decrease in free energy dissipated due to cell motion comes about 
even as the cell flux, ccvρ itself remains unchanged. 
 
Similarly, we have modeled an increase in motility of the tumor cells by increasing the cell diffusivity to 
Dc = 10-13 m2-sec-1. The corresponding cell, oxygen and glucose concentrations ( goc ρρρ ,, ) are shown 
in Supporting Information as Figures S1—S3. No significant variations are observed in any of the free 
energy density rate terms except for the dissipation due to cell motion, which increases by three orders of 
magnitude in direct relation to the magnification of the cell flux, cccc Dv ρρ ∇−= . The larger diffusivity 
Dc = 10-13 m2-sec-1 means that the cells displace by ~225 μm over a day in comparison with a 
displacement of ~7.2 μm for Dc = 10-16 m2-sec-1. This model of higher motility cells is in good 
quantitative agreement with reports in the experimental literature of highly metastatic glioma cells 
(Deisboeck et al., 2001; Hegedus et al., 2004). The corresponding diffusivity, Dc = 10-13 m2-sec-1, also 
was used for gliomas by Khain and Sander (2006). However, even this greatly magnified dissipation due 
to enhanced cell motility remains two orders of magnitude lower than the rates of free energy change 
governed by the dominant biochemical mechanisms discussed above. An increase in gel stiffness by an 
order of magnitude affected only the rate of free energy storage due to growth against a stress, grd:σ− , 
magnifying it by a factor of nearly 3 while the other rate terms showed no significant variations. 
 
5. Discussion 
 
5.1 Rationale for computational study of free energy changes in growing tumor spheroids 
Firstly, we reiterate our statement that free energy change at the tumor scale is a universal measure for 
quantification of the physical processes that govern cancer’s progression. This has been the motivation for 



In silico estimates of free energy changes in growing tumor spheroids 

 14

our continuum theory-based mathematical formulation of tumor physics and its extension to obtain a 
precise statement of the relation between the free energy rates of the various mechanisms at the tumor 
scale. The free energy inequality (15) is this statement, and it is important to note here that it is a local 
statement, holding for each point of the tumor spheroid. We note also that it is of interest to have 
spatially-varying field values of the terms in the free energy inequality. It allows us to study the effect of 
non-uniform concentrations (of cells, ECM, oxygen and glucose), stress and boundary conditions on the 
biochemical dynamics and mechanics of the tumor. For instance, it would allow the study of how non-
uniform tumor growth and cell motion are induced over the tumor spheroid by these conditions. In 
addition to the spatial variation in the field values, tumor scale studies would also allow us to investigate 
how free energy rates change during tumor spheroid development, thereby providing a model for energy 
usage at different stages of a cancer. 
  
If we were to rely solely on experimental studies to examine these free energy rates for a tumor spheroid 
system, we would need to obtain spatially-varying values for each of the fields in Inequalities (15) and 
(17). Experimentally, it is possible to obtain spatially-varying field values for the 
concentrations, oec ρρρ ,,  and gρ , and from the changes in cρ and eρ , the rate of deformation tensor 
due to growth, i.e., grd can be computed. However, the mass-specific free energies, cc

chem ψψ , and eψ , 
must be computed on the basis of constitutive models and the stress,σ , from the viscoelastic and active 
stress models for mechanical response. These can be computed very efficiently within the computational 
model. We note also that the experiments will allow only a limited spatial resolution, i.e., the values can 
be measured only at a limited number of points. However, with the mathematical model the spatial 
resolution is limited only by the computational power available, and that provides a resolution that is 
several orders of magnitude greater than from experiments.12 Additionally, a mathematical model is 
necessary for a system-wide understanding of how different (biochemical and mechanical) effects interact 
and lead to emergent properties. It is for these reasons that we have pursued a computational evaluation of 
the terms in the free energy inequality. For this specific study of tumor-scale free energy rates, 
experiments play the critical role of providing parameters that are as precise as possible within the limits 
of the techniques. 
 
5.2 The roles of tumor scale and hierarchical studies 
The studies of free energy rates associated with the biochemical and mechanical processes at the tumor 
scale can be complemented by investigations of the same processes at the cell-ECM and sub-cellular 
scales. We note that many experimental techniques have been developed for this purpose, while models 
of cell mechanics and sub-cellular processes are also common. Such studies at a hierarchy of scales would 
show how the free energy rates of these processes change between the sub-cellular, cell-ECM and tumor 
scales. This could suggest, for example, whether the agglomeration of single cells into solid tumors 
causes significant changes in free energy rates associated with cell proliferation or cell motility. Thereby 
the impact of collective behavior on the development of cancers that form solid tumors can be studied. 
New insights can thus be gained into the development of the cancer by exploiting the universality of free 
energy rates as a measure for comparison. 
 
5.3 Free energy estimates 
The preliminary computations that we have presented here show that the rate of change of the chemical 
free energy density of cells ( c

chem
cψρ & ), rate of free energy density storage in newly-formed cells and 

ECM ( ccψπ  and eeψπ , respectively), and the rate at which free energy density is drawn from glucose 

                                                 
12 We note, of course, that it is meaningless to numerically resolve cρ finer than the scale of a single cell (~10 μm), 

while eρ , oρ and gρ may well be resolved below this scale. 



In silico estimates of free energy changes in growing tumor spheroids 

 15

( ggψπ ) are the same order of magnitude, and comparable to each other. This suggests that the rates of 
free energy interconversion are relatively close to being balanced between the (mainly) biochemical 
processes associated with the cancer’s dynamics. The total rate of change of free energy density is 
negative as required by (15) and also of the same magnitude as the above terms. The numerical value of 
this total rate is this preliminary study’s estimate of the imbalance in free energy conversions that is being 
lost in accordance with the second law of thermodynamics. That this loss is comparable to the free energy 
converted by any of the four dominant tumor scale mechanisms listed above suggests that these 
biochemical processes that dominate cancer’s dynamics are inefficient.  
 
5.3.1 Relative free energy density rates of biochemical and mechanical deformation processes 
Before considering this interpretation of free energy rates in terms of efficiency it is useful to recall the 
sources for the parameters that play important roles in this estimate, and reflect on origins of uncertainty 
or errors therein. The consumption rates of oxygen, oπ , and glucose, gπ , are based on models fitted to 
data for EMT6/Ro cancer cells (Casciari et al., 1992), the optimal cell doubling time, opt

Dt , was matched to 
our own preliminary tumor growth experiments with LS174T human colon adenocarcinoma cells, and the 
rate of change of chemical free energy in cells, c

chemψ& , was the sum of the estimate for metabolic power 
output by normal mammalian cells in culture from West et al. (2002), and the energy drawn from glucose 
consumption. While we have not yet found specific quantitative data for c

chemψ& for cancer cell lines, it is 
quite possible that it may be significantly different from normal cells. Apart from this, the free energy rate 
terms in (15) must be consistently measured on the same cancer cell line(s) to rigorously validate these 
findings regarding the mechanisms that dominate the free energy inequality. We emphasize the 
preliminary, exploratory nature of this finding. In general, more comprehensive experiments are needed 
from which consistent data can be obtained for a single system of cancer cells. One purpose of our paper 
is to motivate a comprehensive experimental study of this nature that is forthcoming. 
 
The inefficiency of the biochemical processes suggests that cancer cells do not experience the 
evolutionary pressure to be energy efficient at the early, pre-vascular stage of the tumor that is 
represented by tumor spheroids. That the dissipation of a large amount of free energy (inefficiency) is 
detrimental for survival of cells is reflected in the development of a necrotic core in the tumor spheroid. 
However, rather than herald a suppression of tumor development, the necrosis only causes termination of 
the exponential growth phase, as has been well-documented (see the literature cited in this regard in 
Section 1.2). In vivo, the tumor continues to develop via angiogenesis—an adaptation that may be viewed 
as “subsidizing” the inefficiency of its biochemical processes in the pre-vascular stage. 
 
We have already discussed the origins of the quantities that parameterize the mechanical response of the 
tumor spheroid, the rates of cell proliferation, oxygen and glucose consumption and cell motion. 
Additionally, the estimates for moduli of soft matter, including cells, and hydrogels are widely reported 
(see Suresh, 2007 and references therein; Helmlinger et al., 1997). Given the growth rate of tumor 
spheroids, also widely reported in the many papers that we have cited, there is a good degree of 
confidence in the tumor growth rates, grd , and using the moduli, therefore in the stress, σ . On this basis, 
the estimates for rate of free energy storage due to growth against stress are accurate at least up to the 
order of magnitude. We therefore expect that our conclusion is valid on the relative insignificance of the 
rate at which free energy is stored by this mechanism. Even in vivo the stress created in a growing solid 
tumor confined by surrounding tissue is unlikely to exceed the stress in our computations by more than an 
order of magnitude, and we expect that the rate of free energy storage by this mechanism is low in vivo 
also. The small free energy density rate associated with this contribution in comparison with the 
biochemical processes suggests that there is little prospect of achieving tumor growth control by energy 
starvation through mechanical interventions. However, such control may be achieved via biochemo-
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mechanical signaling as suggested by the work of Helmlinger et al. (1997) and Chang et al. (2008). We 
draw attention to the fact that the tumor growth model does not incorporate the stress-induced suppression 
of growth that has been observed in these two papers. Inclusion of this effect would only further lower the 
rate of free energy storage due to growth against stress in the computations. 
 
5.3.2 Free energy changes associated with cell motion 
The rate of dissipation of free energy due to cell motion, ccc v⋅∇ψρ , is the scalar product of the cell 
flux, ccvρ , and the gradient of the mass-specific free energy of cells, cψ∇ . Of these the magnitude of 
the cell flux is determined largely by the diffusivity, cD , which we have varied to model nearly immotile 
to higher motility cells. The mass-specific free energy of cells is )( ecc

chem
c W ρρψψ ++= , of 

which we have estimated c
chemψ  from West et al.’s (2001) calculation of the energy required to form a 

mammalian cell, c
formψ , and the additional energy gained from glucose consumption: 
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where the integral is from the initial time to the current time, and g
0ρ is the initial glucose concentration. 

The values of c
chemψ therefore have some dependence on the solution of the IBVP, and there is a degree of 

uncertainty arising from the choice of initial and boundary conditions. For this reason there is a little less 
confidence in our results pointing to the insignificance of the dissipation due to random cell motion. 
Furthermore, chemotactic and haptotactic cell motion, which are important for eventual metastasis, have 
not been included in this study. The inclusion of these effects in studies of later (vascularized) stages of 
tumor development could qualitatively change this estimate. 
 
We note also that the physics of single cell motion is complex. It involves remodeling of the actin 
cytoskeleton by polymerization and depolymerization, deformation of the cell membrane during 
filopodial motion, retraction of the cell membrane at the trailing edge due to actomyosin contractility, cell 
attachment and detachment regulated by focal adhesion dynamics, and mechanical interactions of the cell 
with the ECM. Free energy changes are involved in all of these phenomena. Some of these are 
mechanisms of free energy storage in newly-formed actin stress fibers, focal adhesions and their 
elastically-deforming parts, while free energy is dissipated due to reaction, diffusion and viscous 
processes. However, none of these effects are represented in our model at the tumor scale where cells are 
treated as a concentration field. The physics of single cell motion outlined above would emerge in models 
at the sub-cellular and cell-ECM scales. The dissipation represented in the term ccc v⋅∇ψρ only 
corresponds to the rate of free energy loss as cells migrate to positions in the medium where they possess 
lower free energy. We will obtain a more complete estimate of the rate of change of free energy density 
due to cell motion by carrying out studies at a hierarchy of scales: sub-cellular, cell-ECM and the tumor 
scale. It could reveal whether the mechanisms that govern this process at these different scales introduce 
notable quantitative and qualitative differences between the rate of change of free energy due to cell 
motion at the different scales. The present communication only serves to begin this study. Investigations 
of the free energy resources consumed by cell motion over this hierarchy of scales when carried out for 
different cell lines and biochemical/mechanical interventions will ultimately lead to a better 
understanding of the metastatic potential of cancers. 
 
We note also that more strongly adherent cells would have a higher energy of binding with each other and 
with the ECM. While the free energy changes associated with formation and breakage of adhesions have 
not been included, we note that higher adhesion energies would manifest themselves in lower cell 
diffusivity—an effect that we have considered. Also of note in this regard is the work of Turner (2005) 
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where a continuum model was obtained for cell motion by accounting for the energy of cell-cell and cell-
ECM adhesion. A multiscale technique was developed, in which the continuum limit of adhesive 
interactions between discrete cells and the ECM led to a fourth-order nonlinear PDE for transport that 
bears relation to the Cahn-Hilliard Equation. Khain and Sander (2008) also made direct use of the Cahn-
Hilliard Equation to model adhesive effects in cell transport. As explained above, we foresee 
incorporating the influence of adhesion and other lower scale effects by carrying out studies at a hierarchy 
of scales to investigate the free energy usage of tumors. 
 
5.3.3 The role of parametric studies 
The parametric studies that we have carried out by varying the cell doubling time, cell diffusivity and gel 
stiffness also are of an exploratory nature. Variations in the cell doubling time bring about dramatic 
changes in the free energy stored in newly-formed cells, ccψπ , and the free energy dissipated due to cell 
motion, ccc v⋅∇ψρ , suggesting that further studies are needed to validate, and if confirmed, to explain 
the strength of this coupling of biophysical effects. These studies could include both computations such as 
here but with more comprehensive and consistent data, as well as investigations at the cell-matrix and 
sub-cellular scales. 
 
Among other avenues for exploration are the parameterization of cell proliferation, metabolic, and 
oxygen/glucose consumption rates for different gel stiffnesses and cell-ECM adhesiveness. The empirical 
determination of these rates and their use in the free energy computations that we have demonstrated here 
will reveal whether and how the mechanisms of free energy change are altered by these different 
conditions. This also may point to further studies that will have to include the cell-cell, cell-ECM and 
sub-cellular scales.  
 
5.4 Onset of necrosis 
The model also can be used to study the onset of necrosis. Figure 5 shows the distributions of oc ρρ , and 

gρ for a more proliferative phenotype, which was modeled by an optimal doubling time opt
Dt that is half of 

the value of the baseline case in Figures 2—4. Note the pronounced depletion of oxygen and glucose, 
which has been studied in a number of experiments (cited in Section 1.2) for its role in the onset of 
necrotic cores in tumor spheroids. However, we have not been able to identify a sufficiently precise 
criterion for onset of necrosis from these experiments. For this reason we have not attempted to model the 
formation of a necrotic core in our computations, and have concentrated on free energy changes in the 
pre-necrotic stage. Note that the higher consumption of oxygen and glucose by the more aggressively 
proliferating cells has also resulted in a noticeable radial gradient of cell concentration: the core being 
depleted of oxygen and glucose has proliferated slower. This inhomogeneity is made possible by the cell 
proliferation rate modeled by Equations (5) and (6) with their pointwise dependence on oρ and gρ . 
These equations were obtained by applying the results of experiments on entire tumor spheroids held at 
fixed oρ and gρ  (Casciari et al., 1996) to each point in the computational domain. When these equations 
are solved in our computations, even though each point of the tumor follows an exponential growth law, 
the distribution of cell proliferation rate is inhomogeneous due to spatial variations in oρ and gρ  (Figure 
S4 in Supporting Information). While still proliferating with an exponential law, the core is close to the 
onset of necrosis due to depletion of oxygen and glucose. In future studies we will consider the free 
energy rates during development of the necrotic core in tumor spheroids—a state which is observed 
during the development of true solid tumors, also. 
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Figure 1. Time progression of the growth of an LS174T tumor embedded in a 0.5% agarose gel.  Image 
(a) is a phase image of the spheroid shortly after its transplantation into the gel followed by images taken 
at (b) 45, (c) 81, and (d) 140 hours after transplantation.  The scale bar is 50 μm. 
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Figure 2. Computation of a growing tumor spheroid encapsulated in a gel. The state shown corresponds to 20 days. 
This two-dimensional model represents a slice through the tumor spheroid and a surrounding gel, and appears as the 
semicircle in the lower part of the figure. The initial configuration of the tumor spheroid is the inner semicircle of 50 
μm radius, whose boundary appears as a thin black curve. The ring of initial thickness 150 μm bordering the tumor 
spheroid is the encapsulating gel against whose mechanical resistance the spheroid grows. The initial extent of the 
gel is indicated by the outer black semicircle located at 200 μm. The surface plot on the semicircular slice represents 
cell concentration in mg-cc-1  (left hand-side legend). The upper surface plot represents oxygen concentration by its 
colors (right hand-side legend), and glucose concentration by its height, both in mg-cc-1. The red arrows on the 
tumor spheroid are flux vectors of the motile cells. The extent of the tumor spheroid is revealed by the high 
concentration of cells in its core. The cell concentration decreases sharply to zero in the gel. 
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Figure 3. The surface plot shows the distribution, over the tumor spheroid and gel, of the rate of change of free 
energy density from all terms in the free energy inequality (15). The units are Wm-3. The arrows show the flux of 
cell motion. 
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  (a)      (b) 

 
  (c)      (d) 

 
  (e)      (f) 
 
Figure 4. Surface plot of the free energy rate terms in (15). All units are Wm-3. (a) The rate of change of chemical 
free energy density stored in the cells, c

chem
cψρ & . (b) The rate of change of free energy density stored in newly 

formed cells, ccψπ . (c) The rate of change of free energy density stored in newly-produced ECM, eeψπ . (d) The 

rate at which free energy density is dissipated into work done as the tumor spheroid grows against stress, grd:σ− . 
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(e) The rate at which free energy density is dissipated due to cell motion, ccc v⋅∇ψρ . (f) The rate of change of 

free energy density due to glucose consumption, ggψπ . 
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Figure 5. The dynamical state of the tumor spheroid at 28.3 days with more proliferative cells. The cell doubling 
time is half the value of the case modeled in Figure 2. Note the significantly greater depletion of glucose and oxygen 
in the tumor spheroid’s core. This two-dimensional model represents a slice through the tumor spheroid and a 
surrounding gel, and appears as the semicircle in the lower part of the figure. The initial configuration of the tumor 
spheroid is the inner semicircle of 50 μm radius, whose boundary appears as a thin black curve. The ring of initial 
thickness 150 μm bordering the tumor spheroid is the encapsulating gel against whose mechanical resistance the 
spheroid grows. The initial extent of the gel is indicated by the outer black semicircle located at 200 μm. The surface 
plot on the semicircular slice represents cell concentration in mg-cc-1  (left hand-side legend). The upper surface plot 
represents oxygen concentration by its colors (right hand-side legend), and glucose concentration by its height, both 
in mg-cc-1. The red arrows on the tumor spheroid are flux vectors of the motile cells. The extent of the tumor 
spheroid is revealed by the high concentration of cells in its core. The cell concentration decreases sharply to zero in 
the gel. 
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Table 1. Parameters used in the continuum model. 
Parameter Units Value Remarks 
κ (tumor 
spheroid) 

Pa 100000 Tumor bulk modulus estimated from tumor Young’s modulus 6 
kPa (Suresh, 2007) in the limit of infinitesimal strain for an 
incompressible soft material.  

μ (tumor 
spheroid) 

Pa 2013 Obtained by matching tumor Young’s modulus 6 kPa (Suresh, 
2007) in the limit of infinitesimal strain for an incompressible 
soft material. 

κ  (gel) Pa 100000 Gel bulk modulus to match tumor spheroid. 
μ  (gel) Pa 2013 Gel shear modulus = tumor spheroid shear modulus in the linear 

regime. 
β Pa(mg-cc-1)-2 0.55 Scaled up from actomyosin-generated stress of 5.5 kPa on a 

focal adhesion (Balaban et al., 2001), and accounting for the 
ratio of ~104 between cell and total focal adhesion area. 

Dc m2-sec-1 10-16 An estimate for low motility cells displacing ~ 3 μm over a day 
by random motion. 

A (mg-cc-1)-1sec-1 81027.8 −×  Estimate for a cell producing 5% of its mass in collagen over a 
week. 

Do m2-sec-1 10105.16 −×  Jiang et al. (2005) 

Dg m2-sec-1 111022.4 −×  Jiang et al. (2005) 

Bcell W 11103 −×  West et al. (2002) 

mcell kg 12103 −×  Common estimate for cells 
gψ  J-kg-1 51022.4 ×  Taken to be the free energy change of the glycolysis reaction 

that converts one molecule of glucose to pyruvate and 2 ATP 
molecules (Garrett & Grisham, 2005) 

 
Table 2. Apparent modulus values (in kPa) for various Agarose concentrations and strain rates. Note the 
strain rate effect. 

 
 

  Agarose concentration 
  0.5% 0.75% 1.0% 2.0% 

4101 −×  -- 1.5 2.5 15 

4105 −×  0.7 1.8 3.8 22 
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3101 −×  0.8 1.9 4.0 25 


