
24 A computational framework for nonlinear elasticity

By Harish Narayanan

Nonlinear elasticity theory plays a fundamental role in modeling the mechanical response of many
polymeric and biological materials. Such materials are capable of undergoing finite deformation, and their
material response is often characterized by complex, nonlinear constitutive relationships. (See, for example,
[Holzapfel, 2000] and [Truesdell and Noll, 1965] and the references within for several examples.) Because
of these difficulties, predicting the response of arbitrary structures composed of such materials to arbitrary
loads requires numerical computation, usually based on the finite element method. The steps involved in
the construction of the required finite element algorithms are classical and straightforward in principle, but
their application to non-trivial material models are typically tedious and error-prone. Our recent work on
an automated computational framework for nonlinear elasticity, CBC.Twist, is an attempt to alleviate this
problem.

The focus of this chapter will be to describe the design and implementation of CBC.Twist, as well
as providing examples of its use. The goal is to allow researchers to easily pose and solve problems in
nonlinear elasticity in a straightforward manner, so that they may focus on higher-level modeling questions
without being hindered by specific implementation issues.

What follows is the proposed outline for the chapter.
The chapter begins with a summary of some key results from classical nonlinear elasticity theory. This

discussion is used to motivate the design of CBC.Twist, which is a DOLFIN [Logg and Wells, 2010] module
written in UFL syntax [Alnæs and Logg, 2009] that closely resembles how the theory is written down on
paper. In particular, we will see how one can easily pose sophisticated material models purely at the level
of specifying a strain energy function. The discourse will then turn to the primary equation of interest: the
balance of linear momentum of a body posed in the reference configuration. A finite element scheme for
this equation will then be presented, pointing out how CBC.Twist leverages the automatic linearization
capabilities of UFL to implement this scheme in a manner that is independent of the specific material model.
The time-stepping schemes that CBC.Twist implements will also be discussed. With this in place, we turn
to increasingly complex examples to see how initial- boundary-value problems in nonlinear elasticity can
be posed and solved in CBC.Twist using only a few lines of high-level code. The chapter concludes with
some remarks on how one can obtain CBC.Twist, along with ideas for its extension.

24.1 Brief overview of nonlinear elasticity theory as it relates to CBC.Twist

The goal of this section is to present an overview of the mathematical theory of nonlinear elasticity, which
plays an important role in the design of CBC.Twist. Readers interested in a more comprehensive treatment
of the subject are referred to, for example, the classical treatises of Truesdell and Toupin [1960] and Truesdell
and Noll [1965], or more modern works such as Gurtin [1981], Ogden [1997] and Holzapfel [2000].

384 automated scientific computing

][

][
Figure 24.1: An elastic body idealized as
a continuum, subjected to body forces,
B, surface tractions, T, and prescribed
displacement boundary conditions.

Posing the question we aim to answer

The theory begins by idealizing the elastic body of interest as an open subset of R2,3 with a piecewise
smooth boundary. At a reference placement of the body, Ω, points in the body are identified by their
reference positions, X ∈ Ω. The treatment presented in this chapter is posed in terms of fields which are
parametrized by reference positions. This is commonly termed the material or Lagrangian description.

In its most basic terms, the deformation of the body over a time t ∈ [0, T] is a sufficiently smooth bijective
map ϕ : Ω× [0, T] → R2,3, where Ω := Ω ∪ ∂Ω and ∂Ω is the boundary of Ω. The restrictions on the
map ensure that the motion it describes is physical (e.g., disallowing the interpenetration of matter or the
formation of cracks). From this, we can construct the displacement field,

u(X, t) = ϕ(X, t)− X, (24.1)

which represents the displacement of a point in time relative to its reference position.
With this brief background, we are ready to pose the fundamental question that CBC.Twist is designed

to answer: Given a body comprised of a specified elastic material, what is the displacement of the body
when it is subjected to prescribed:

• Body forces: These include forces such as the self-weight of a body, forces on ferromagnetic materials in
magnetic fields, etc., which act everywhere in the volume of the body. They are denoted by the vector
field B(X, t).

• Traction forces: This is the force measured per unit surface area acting on the Neumann boundary of the
body, ∂ΩN, and denoted by the vector field T(X, t).

• Displacement boundary conditions: These are displacement fields prescribed on the Dirichlet boundary of
the body, ∂ΩD.

It is assumed that ∂ΩN ∩ ∂ΩD = ∅ and ∂ΩN ∪ ∂ΩD = ∂Ω. These details are depicted in Figure 24.1.

The basic equation we need to solve

In order to determine the displacement of an elastic body subjected to these specified loads and boundary
conditions, we turn to a fundamental law called the balance of linear momentum. This is a law which is
valid for all materials and must hold for all time. CBC.Twist solves the Lagrangian form of this equation,
which is presented below in local form that is pertinent to numerical implementation by the finite element
method:

ρ
∂2u
∂t2 = Div(P) + B in Ω, (24.2)

a computational framework for nonlinear elasticity 385

Infinitesimal strain tensor ε = 1
2
(
Grad(u) + Grad(u)T)

Deformation gradient F = 1 + Grad(u)
Right Cauchy–Green tensor C = FTF

Green–Lagrange strain tensor E = 1
2 (C− 1)

Left Cauchy–Green tensor b = FFT

Euler–Almansi strain tensor e = 1
2

(
1− b−1

)

Volumetric and isochoric
decomposition of C C̄ = J−

2
3 C, J = Det(F)

Principal invariants of C I1 = Tr(C), I2 = 1
2

(
I2
1 − Tr(C2)

)
, I3 = Det(C)

Principal stretches and directions C = ∑3
A=1 λ2

ANA ⊗ NA, ||NA|| = 1

Table 24.1: Definitions of some common
strain measures.

where ρ is the reference density of the body, P is the first Piola–Kirchhoff stress tensor, Div(·) is the divergence
operator and B is the body force per unit volume. Along with (24.2), we have initial conditions u(X, 0) =
u0(X) and ∂u

∂t (X, 0) = v0(X) in Ω, and boundary conditions u(X, t) = g(X, t) on ∂ΩD and PN = T on
∂ΩN. Here, N is the outward normal on the boundary.

We focus on the balance of linear momentum because, in a continuous sense, the other fundamental
balance principles that materials must obey—the balance of mass (continuity equation), balance of angular
momentum and balance of energy—are each trivially satisfied1 in the Lagrangian description by elastic
materials with suitably chosen stress responses.

Accounting for different materials

It is important to reiterate that (24.2) is valid for all materials. In order to differentiate between different
materials and to characterize their specific mechanical responses, the theory turns to constitutive relationships,
which are models for describing the real mechanical behavior of matter. In the case of nonlinear elastic
(or hyperelastic) materials, this description is posed in the form of a stress-strain relationship through an
objective and frame-indifferent Helmholtz free energy function called the strain energy function, ψ. This is an
energy defined per unit reference volume and is solely a function of the local strain measure. Comprehensive
texts on the subject (e.g. Holzapfel [2000]) cover the motivations for defining different forms of strain
measures, but in this chapter we just provide the definitions of some of the most common forms. In
what follows, Grad(·) is the gradient operator, and Tr(·) and Det(·) are the trace and determinant of ·,
respectively.

In CBC.Twist, each of the forms listed in Table 24.1 have been implemented in the file kinematics.py
in UFL notation that closely resemble their definitions above. Figure 24.2 presents a section of this file.
Notice that it is straightforward to introduce other custom measures as required.

The stress response of isotropic hyperelastic materials (the class of materials CBC.Twist restricts its
attention to) can be derived from the scalar-valued strain energy function. In particular, the tensor known
as the second Piola–Kirchhoff stress tensor is defined using the following constitutive relationship:

S = F−1 ∂ψ(F)
∂F

. (24.3)

1It should be noted that the story is not so simple in the context of numerical
approximations. For instance, when modeling (nearly) incompressible materials, it is
well known that the ill-conditioned stiffness matrix resulting from the conventional
Galerkin approximation (discretizing only the displacement field) can result in volumet-
ric locking. One can work around this difficulty by resorting to a mixed formulation of
the Hu–Washizu type [Simo and Hughes, 1998], but such a formulation is beyond the
scope of the current chapter. CBC.Twist can be extended to such a formulation, but for
now, we circumvent the problem by restricting our attention to compressible materials.

386 automated scientific computing

Python code
Deformation gradient
def DeformationGradient(u):

I = SecondOrderIdentity(u)
return variable(I + Grad(u))

Determinant of the deformation gradient
def Jacobian(u):

F = DeformationGradient(u)
return variable(det(F))

Right Cauchy -Green tensor
def RightCauchyGreen(u):

F = DeformationGradient(u)
return variable(F.T*F)

Green -Lagrange strain tensor
def GreenLagrangeStrain(u):

I = SecondOrderIdentity(u)
C = RightCauchyGreen(u)
return variable(0.5*(C - I))

Invariants of an arbitrary tensor , A
def Invariants(A):

I1 = tr(A)
I2 = 0.5*(tr(A)**2 - tr(A*A))
I3 = det(A)
return [I1 , I2 , I3]

Isochoric part of the deformation gradient
def IsochoricDeformationGradient(u):

F = DeformationGradient(u)
J = Jacobian(u)
return variable(J**(-1.0/3.0)*F)

Isochoric part of the right Cauchy -Green tensor
def IsochoricRightCauchyGreen(u):

C = RightCauchyGreen(u)
J = Jacobian(u)
return variable(J**(-2.0/3.0)*C)

Figure 24.2: Samples of how strain mea-
sures are implemented in CBC.Twist.
Notice that the definitions in the imple-
mentation closely resemble the classical
forms introduced in Table 24.1.

a computational framework for nonlinear elasticity 387

Python code
def SecondPiolaKirchhoffStress(self , u):

...

if kinematic_measure == "InfinitesimalStrain":
epsilon = self.epsilon
S = diff(psi , epsilon)

elif kinematic_measure == "RightCauchyGreen":
C = self.C
S = 2*diff(psi , C)

elif kinematic_measure == "GreenLagrangeStrain":
E = self.E
S = diff(psi , E)

elif kinematic_measure == "CauchyGreenInvariants":
I = self.I; C = self.C
I1 = self.I1; I2 = self.I2; I3 = self.I3
gamma1 = diff(psi , I1) + I1*diff(psi , I2)
gamma2 = -diff(psi , I2)
gamma3 = I3*diff(psi , I3)
S = 2*(gamma1*I + gamma2*C + gamma3*inv(C))

...
return S

Figure 24.3: Partial listing of the method
that suitably computes the second Piola–
Kirchhoff stress tensor based on the
strain measure.

The second Piola–Kirchhoff stress tensor is related to the first Piola–Kirchhoff stress tensor introduced
earlier through the relation, P = FS.

As already mentioned, the strain energy function can be posed in equivalent forms in terms of different
strain measures. (Again, the reader is directed to classical texts to motivate this.) In order to then arrive at
the second Piola–Kirchhoff stress tensor, we turn to the chain rule of differentiation. For example,

S = 2
∂ψ(C)

∂C
=

∂ψ(E)
∂E

= 2
[(

∂ψ(I1, I2, I3)

∂I1
+ I1

∂ψ(I1, I2, I3)

∂I2

)
1− ∂ψ(I1, I2, I3)

∂I2
C + I3

∂ψ(I1, I2, I3)

∂I3
C−1

]

=
3

∑
A=1

1
λA

∂ψ(λ1, λ2, λ3)

∂λA
NA ⊗ NA = . . .

(24.4)

Using definitions such as the ones explicitly provided in (24.4), CBC.Twist computes the second Piola–
Kirchhoff stress tensor from the strain energy function by suitably differentiating it with respect to the
appropriate strain measure. This allows the user to easily specify material models in terms of each of the
strain measures introduced in Table 24.1. The base class for all material models, MaterialModel, encapsu-
lates this functionality. The relevant method of this class is provided in Figure 24.3. The implementation
relies heavily on the UFL diff operator.

The generality of the material model base class allows for the (almost trivial) specification of a large set
of models. To see this in practice, let us consider two popular material models,

• the St. Venant–Kirchhoff model: ψSVK = λ
2 Tr(E)2 + µTr(E2), and

• the two term Mooney–Rivlin model: ψMR = c1(I1 − 3) + c2(I2 − 3),

and see how they can be specified in CBC.Twist. The relevant blocks of code are shown in Figures 24.4
and 24.5.
Clearly, the code simply contains the strain energy function in classical notation, along with some metadata
clarifying the number of material parameters and the strain measure the model relies on. The file
material_models.py contains several other material models, including linear elasticity, neo Hookean, Isihara,

388 automated scientific computing

Python code
class StVenantKirchhoff(MaterialModel)

def model_info(self):
self.num_parameters = 2
self.kinematic_measure = "GreenLagrangeStrain"

def strain_energy(self , parameters):
E = self.E
[mu , lmbda] = parameters
return lmbda/2*(tr(E)**2) + mu*tr(E*E)

Figure 24.4: Definition the strain energy
function for a St. Venant–Kirchhoff ma-
terial.

Python code
class MooneyRivlin(MaterialModel)

def model_info(self):
self.num_parameters = 2
self.kinematic_measure = "CauchyGreenInvariants"

def strain_energy(self , parameters):
I1 = self.I1
I2 = self.I2
[C1 , C2] = parameters
return C1*(I1 - 3) + C2*(I2 - 3)

Figure 24.5: Definition the strain energy
function for a two term Mooney–Rivlin
material.

Biderman, and Gent–Thomas that come pre-implemented in CBC.Twist. (Refer to the article by Marckmann
and Verron [2006] comparing several hyperelastic models for rubber-like materials for their definitions.)
But the salient point to note here is that it is straightforward to introduce other additional models, and this
is a significant feature of CBC.Twist.

24.2 Numerical methods and further implementation details

In the preceding section, we saw the functionality that CBC.Twist provided to easily specify material
models to suitably characterize different materials of interest. In this section, we return to the general form
of the balance of linear momentum and look at details of a finite element formulation and implementation
for this equation. For further details on the treatment that follows, the interested reader is directed to Simo
and Hughes [1998].

The finite element formulation of the balance of linear momentum

By taking the dot product of (24.2) with a test function v ∈ V̂ and integrating over the reference domain
and time, we have

∫ T

0

∫

Ω
ρ

∂2u
∂t2 · v dx dt =

∫ T

0

∫

Ω
Div(P) · v dx dt +

∫ T

0

∫

Ω
B · v dx dt. (24.5)

Noting that the traction vector T = PN on ∂ΩN (N being the outward normal on the boundary) and that
by definition v|∂ΩD = 0, we apply the divergence theorem to arrive at the following weak form of the
balance of linear momentum:
Find u ∈ V, such that ∀ v ∈ V̂:

∫ T

0

∫

Ω
ρ

∂2u
∂t2 · v dx dt +

∫ T

0

∫

Ω
P : Grad(v)dx dt =

∫ T

0

∫

Ω
B · v dx dt +

∫ T

0

∫

∂ΩN

T · v ds dt, (24.6)

a computational framework for nonlinear elasticity 389

with initial conditions u(X, 0) = u0(X) and ∂u
∂t (X, 0) = v0(X) in Ω, and boundary conditions u(X, t) =

g(X, t) on ∂ΩD.
The finite element formulation implemented in CBC.Twist follows the Galerkin approximation of the

above weak form (24.6), by looking for solutions in a finite solution space Vh ⊂ V and allowing for test
functions in a finite approximation of the test space V̂h ⊂ V̂.2

Implementation of the static form

We consider first the static weak form (dropping the time derivative term) of the balance of linear
momentum which reads

∫

Ω
P : Grad(v)dx−

∫

Ω
B · v dx−

∫

∂ΩN

T · v ds = 0. (24.7)

Since CBC.Twist provides the necessary functionality to easily compute the first Piola–Kirchhoff stress
tensor, P, given a displacement field, u, for arbitrary material models, (24.7) is just a nonlinear functional
in terms of u. The automatic differentiation capabilities of UFL3 make this nonlinear form straightforward
to implement, as evidenced by the code listing in Figure 24.6.

This listing provides the relevant section of the static balance of linear momentum solver class,
StaticMomentumBalanceSolver. The class draws information about the problem (mesh, loading, boundary
conditions and form of the stress equation derived from the material model) from the user-specified
problem class,4 and solves the nonlinear momentum balance equation using a Newton solver.

Time-stepping algorithms

CBC.Twist implements two time integration algorithms to solve the weak form of the fully dynamic balance
of linear momentum (24.6). The first of these is the so-called CG1 method [Eriksson et al., 1996]. In order
to derive this method, (24.6), which is a second order differential equation in time, is rewritten as a system
of first order equations. We do this by introducing an additional velocity variable, w = ∂u

∂t . Thus, the weak
form now reads:

2We now note an inherent advantage in choosing the Lagrangian description in
formulating the theory. The fact that the integrals in (24.6), along with the various
fields and differential operators, are defined over the fixed domain Ω means that one
need not be concerned with the complexity associated with calculations on a moving
computational domain when implementing this formulation.

3An earlier chapter on UFL (17) provides a detailed look at the capabilities of UFL,
as well as insights into how it achieves its functionality. Even so, we note the following
differentiation capabilities of UFL because of their pivotal relevance to this work:

• Computing spatial derivatives of fields, which allows for the construction of differ-
ential operators such as such as Grad(·) or Div(·):
df_i = Dx(f, i)

• Differentiating arbitrary expressions with respect to variables they are functions of:
g = variable(cos(cell.x[0]))
f = exp(g**2)
h = diff(f, g)

• Differentiating forms with respect to coefficients of a discrete function, allowing for
automatic linearizations of nonlinear variational forms:
a = derivative(L, w, u)

4Details of how the user can specify problem details are covered in the following
section containing examples of CBC.Twist usage.

390 automated scientific computing

Python code
Get the problem mesh
mesh = problem.mesh()

Define the function space
vector = VectorFunctionSpace(mesh , "CG", 1)

Test and trial functions
v = TestFunction(vector)
u = Function(vector)
du = TrialFunction(vector)

Get forces and boundary conditions
B = problem.body_force ()
PN = problem.surface_traction ()
bcu = problem.boundary_conditions ()

First Piola -Kirchhoff stress tensor based on
the material model
P = problem.first_pk_stress(u)

The variational form corresponding to static
hyperelasticity
L = inner(P, Grad(v))*dx - inner(B, v)*dx -

inner(PN , v)*ds
a = derivative(L, u, du)

Setup and solve problem
equation = VariationalProblem(a, L, bcu ,

nonlinear = True)
equation.solve(u)

Figure 24.6: The relevant section of the
class StaticMomentumBalanceSolver,
the solver for the static balance of lin-
ear momentum.

Find (u, w) ∈ V, such that ∀ (v, r) ∈ V̂:

∫ T

0

∫

Ω
ρ

∂w
∂t
· v dx dt +

∫ T

0

∫

Ω
P : Grad(v)dx dt =

∫ T

0

∫

Ω
B · v dx dt +

∫ T

0

∫

∂ΩN

T · v ds dt, and

∫ T

0

∫

Ω

∂u
∂t
· r dx dt =

∫ T

0

∫

Ω
w · r dx dt.

(24.8)

with initial conditions u(X, 0) = u0(X) and w(X, 0) = v0(X) in Ω, and boundary conditions u(X, t) =

g(X, t) on ∂ΩD.
We now assume that the finite element approximation space Vh is CG1 (continuous and piecewise

linear in time), and V̂h is DG0 (discontinuous and piecewise constant in time). With these assumptions, we
arrive at the following scheme:

∫

Ω
ρ
(wn+1 − wn)

∆t
· v dx +

∫

Ω
P(umid) : Grad(v)dx =

∫

Ω
B · v dx +

∫

∂ΩN

T · v ds, and

∫

Ω

(un+1 − un)

∆t
· r dx =

∫

Ω
wmid · r dx,

(24.9)

where (·)n and (·)n+1 are the values of a quantity at the current and subsequent time-step, respectively, and
(·)mid = (·)n+(·)n+1

2 . A section of the CG1 linear momentum balance solver class is presented in Figure 24.7.
The code closely mirrors the scheme defined in (24.9), and results in a mixed system that is solved for
using a Newton scheme.

The CG1 scheme defined in (24.9) is straightforward to derive and implement, and it is second order
accurate and energy conserving.5 But it should also be noted that the mixed system that results from the

5This is demonstrated in Figure 24.14 as part of the second example calculation.

a computational framework for nonlinear elasticity 391

Python code
class CG1MomentumBalanceSolver(CBCSolver):

Define function spaces
vector = VectorFunctionSpace(mesh , "CG", 1)
mixed_element = MixedFunctionSpace([vector ,

vector])
V = TestFunction(mixed_element)
dU = TrialFunction(mixed_element)
U = Function(mixed_element)
U0 = Function(mixed_element)

Get initial conditions , boundary conditions
and body forces
...

Functions
v, r = split(V)
u, w = split(U)
u0 , w0 = split(U0)

Evaluate displacements and velocities at
mid points
u_mid = 0.5*(u0 + u)
w_mid = 0.5*(w0 + w)

Get reference density
rho = problem.reference_density ()

Piola -Kirchhoff stress tensor based on the
material model
P = problem.first_pk_stress(u_mid)

The variational form corresponding to
dynamic hyperelasticity
L = rho*inner(w - w0, v)*dx \

+ dt*inner(P, grad(v))*dx \
- dt*inner(B, v)*dx\
+ inner(u - u0 , r)*dx \
- dt*inner(w_mid , r)*dx

Add contributions to the form from the
Neumann boundary conditions
...

a = derivative(L, U, dU)

Figure 24.7: Relevant portion of the dy-
namic balance of linear momentum bal-
ance solver using the CG1 time-stepping
scheme.

392 automated scientific computing

formulation is computationally expensive and memory intensive as the number of variables being solved
for have doubled.

CBC.Twist also provides a standard implementation of a finite difference time-stepping algorithm that
is commonly used in the computational mechanics community: the Hilber–Hughes–Taylor (HHT) method
[Hilber et al., 1977]. The stability and dissipative properties of this method in the case of linear problems
have been thoroughly discussed in Hughes [1987]. In particular, the method contains three parameters α, β

and γ which control the accuracy, stability and numerical dissipation of the scheme. The default values for
these parameters chosen in CBC.Twist (α = 1, β = 1

4 and γ = 1
2) ensure that the method is second order

accurate, stable for linear problems and introduces no numerical dissipation.
The method is briefly sketched below. For further details about the scheme itself, or its imple-

mentation in CBC.Twist, the interested reader is directed to the previously mentioned papers, and the
MomentumBalanceSolver class in the file solution_algorithms.py.

Given initial conditions u(X, 0) = u0(X) and ∂u
∂t (X, 0) = v0(X), we can compute the initial acceleration,

a0, from the weak form:

∫

Ω
ρa0 · v dx +

∫

Ω
P(u0) : Grad(v)dx −

∫

Ω
B(X, 0) · v dx −

∫

∂ΩN

T(X, 0) · v ds = 0. (24.10)

This provides the complete initial state (u0, v0, a0) of the body. Now, given the solution at time step n, the
HHT formulae advance the solution to step n + 1 as follows. First, we note the following definitions:

un+1 = un + ∆tvn + ∆t2
[(

1
2
− β

)
an + βan+1

]

vn+1 = vn + ∆t [(1− γ)an + γan+1]

un+α = (1− α)un + αun+1

vn+α = (1− α)vn + αvn+1

tn+α = (1− α)tn + αtn+1

(24.11)

Inserting the definitions in (24.11) into the following form of the balance of linear momentum,

∫

Ω
ρan+1 · v dx +

∫

Ω
P(un+α) : Grad(v)dx −

∫

Ω
B(X, tn+α) · v dx −

∫

∂ΩN

T(X, tn+α) · v ds = 0, (24.12)

we can solve for the for the only unknown variable, the acceleration at the next step, an+1. The acceleration
solution to (24.12) is then used in the definitions (24.11) to update to new displacement and velocity values,
and the problem is stepped through time.

We close this subsection on time-stepping algorithms with one usage detail pertaining to CBC.Twist. By
default, when solving a dynamics problem, CBC.Twist assumes that the user wants to use the HHT method.
In case one wants to override this behavior, they can do so by returning "CG(1)" in the time_stepping
method while specifying the problem. Figure 24.12 is an example showing this.

24.3 Examples of CBC.Twist usage

The algorithms discussed thus far serve primarily to explain the computational framework’s inner working,
and are not at the level at which the user usually interacts with CBC.Twist (unless they are interested
in extending it). In practice, the functionality of CBC.Twist is exposed to the user through two pri-
mary problem definition classes: StaticHyperelasticity and Hyperelasticity. These classes reside in
problem_definitions.py, and contain numerous methods for defining aspects of the nonlinear elasticity
problem. As their names suggest, these are respectively used to describe static or dynamic problems in
nonlinear elasticity.

a computational framework for nonlinear elasticity 393

Figure 24.8: A hyperelastic cube twisted
by 60 degrees.

Over the course of the following examples, we will see how various problems can be defined in
CBC.Twist by suitably deriving from these problem classes and overloading relevant methods.6 We will
also see some results from these calculations. The information defined in the problem classes are internally
transferred to the solvers described earlier to actually solve the problem.

The static twisting of a hyperelastic cube

The first problem we are interested in is the twisting of a unit hyperelastic cube (1 m3). The cube is
assumed to be made out of a St. Venant–Kirchhoff material with Lamé’s parameters µ = 3.8461 N/m2 and
a spatially varying λ = 5.8x1 + 5.7(1− x1) N/m2. Here, x1 is the first coordinate of the reference position,
X.7 In order to twist the cube, the face x1 = 0 is held fixed and the opposite face x1 = 1 is rotated 60

degrees using the Dirichlet condition defined in Figure 24.10.
Before getting to the actual specification of the problem in code, we need to import CBC.Twist’s

functionality.

Python code
from cbc.twist import *

Figure 24.9: CBC.Twist first needs to be
imported to access the functionality that
it offers.

The problem is completely specified by defining relevant methods in the user-created class Twist (see
Figure 24.10), which derives from the base class StaticHyperelasticity. CBC.Twist only requires relevant
methods to be provided, and for the current problem, this includes the computational domain, Dirichlet
boundary conditions and material model. The methods are fairly self-explanatory, but the following points
are to be noted. Firstly, CBC.Twist supports spatially-varying material parameters. Secondly, Dirichlet

6The examples presented in this chapter, along with a few others, reside in the
demos/twist/ folder in CBC.Twist’s source repository. They can be run by navigating
to this folder and typing python demo_name.py on the command-line.

7The numerical parameters in this chapter have been arbitrarily chosen for illustra-
tion of the framework’s use. They do not necessarily correspond to a real material.

394 automated scientific computing

Python code
class Twist(StaticHyperelasticity):

def mesh(self):
n = 8
return UnitCube(n, n, n)

def dirichlet_conditions(self):
clamp = Expression (("0.0", "0.0", "0.0"))
twist = Expression (("0.0",
"y0 + (x[1]-y0)*cos(theta) -

(x[2]-z0)*sin(theta) - x[1]",
"z0 + (x[1]-y0)*sin(theta) +

(x[2]-z0)*cos(theta) - x[2]"))
twist.y0 = 0.5
twist.z0 = 0.5
twist.theta = pi/3
return [clamp , twist]

def dirichlet_boundaries(self):
return ["x[0] == 0.0", "x[0] == 1.0"]

def material_model(self):
mu = 3.8461
lmbda = Expression("x[0]*5.8+(1-x[0])*5.7")

material = StVenantKirchhoff([mu , lmbda])
return material

def __str__(self):
return "A cube twisted by 60 degrees"

Figure 24.10: Problem definition: The
static twisting of a hyperelastic cube.

Python code
twist = Twist ()
u = twist.solve ()

Figure 24.11: Solving the posed prob-
lem.

boundary conditions are posed in two parts: the conditions themselves, and the corresponding boundaries
along which they act.

In order to solve this problem, an instance of the Twist class is created and its solve method is called
(see Figure 24.11). This triggers a Newton solve which exhibits quadratic convergence (see Table 24.2) and
results in the displacement field shown in Figure 24.8.

The dynamic release of a twisted cube

In this problem, we release a unit cube (1 m3) that has previously been twisted. The initial twist was
precomputed in a separate calculation involving a traction force on the top surface and the resulting
displacement field was stored in the file twisty.txt. The release calculation loads this solution as the
initial displacement. It fixes the cube (made of a St. Venant–Kirchhoff material with Lamé’s parameters
µ = 3.8461 N/m2 and λ = 5.76 N/m2) on the bottom surface, and tracks the motion of the cube over 2 s.

The problem is specified in the user-created class Release, which derives from Hyperelasticity. This
example is similar to the previous one, except that since it is a dynamic calculation, it also provides
initial conditions, a reference density and information about time-stepping. Again, the methods listed
in Figure 24.12 are straightforward, and the only additional point to note is that CBC.Twist provides
some convenience utilities to simplify the specification of the problem. For example, one can load initial
conditions directly from files, and it allows for the specification of boundaries purely as conditional strings.

a computational framework for nonlinear elasticity 395

Iteration Relative Residual Norm
1 5.835e-01

2 1.535e-01

3 3.640e-02

4 1.004e-02

5 1.117e-03

6 1.996e-05

7 9.935e-09

8 3.844e-15

Table 24.2: Quadratic convergence of the
Newton method used to solve the hy-
perelasticity problem. It is interesting to
note that this convergence is obtained
even though the 60 degree twist condi-
tion was imposed in a single step.

Python code
class Release(Hyperelasticity):

def mesh(self):
n = 8
return UnitCube(n, n, n)

def end_time(self):
return 2.0

def time_step(self):
return 2.e-3

def time_stepping(self):
return "CG(1)"

def reference_density(self):
return 1.0

def initial_conditions(self):
u0 = "twisty.txt"
v0 = Expression (("0.0", "0.0", "0.0"))
return u0, v0

def dirichlet_values(self):
return [(0, 0, 0)]

def dirichlet_boundaries(self):
return ["x[0] == 0.0"]

def material_model(self):
mu = 3.8461
lmbda = 5.76
material = StVenantKirchhoff([mu , lmbda])
return material

def __str__(self):
return "A pretwisted cube being released"

Figure 24.12: Problem definition: The
dynamic release of a twisted cube.

396 automated scientific computing

(a) t = 0.0 s (b) t = 0.1 s (c) t = 0.2 s

(d) t = 0.3 s (e) t = 0.4 s (f) t = 0.5 s

Figure 24.13: Relaxation and subsequent
re-twisting of a released cube over the
first 0.5 s of the calculation.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

En
er

gy
 (J

)

Time (s)

Kinetic Energy
Potential Energy

Total Energy

Figure 24.14: Over the course of the com-
putation, the energy in the body is con-
verted between potential and kinetic en-
ergy, but the total remains constant.

When Release is instantiated and its solve method is called, we see the relaxation of the pre-twisted
cube. After initial unwinding of the twist, the body proceeds to twist in the opposite direction due
to inertia. This process repeats itself, and snapshots of the displacement over the first 0.5 s are shown
in Figure 24.13. Figure 24.14 highlights the energy conservation of the CG1 numerical scheme used to
time-step this problem by totaling the kinetic energy and potential energy of the body over the course
of the calculation. CBC.Twist provides this information through the methods kinetic_energy(v) and
potential_energy(u), where v and u are velocity and displacement fields respectively.

A hyperelastic dolphin tumbling through a “flow”

In this final example, we aim to crudely simulate the motion of a dolphin under a flow field. The dolphin
is assumed to be made out of a Mooney–Rivlin material (c1 = 6.169 N/m2, c2 = 10.15 N/m2), and the flow
field is simply modeled by a uniform traction force T = (0.05, 0) N acting everywhere on the surface of the
dolphin, pushing it to the right.

This example is constructed to exhibit some additional features of CBC.Twist. For one, CBC.Twist is

a computational framework for nonlinear elasticity 397

Python code
class FishyFlow(Hyperelasticity):

def mesh(self):
mesh = Mesh("dolphin.xml.gz")
return mesh

def end_time(self):
return 10.0

def time_step(self):
return 0.1

def neumann_conditions(self):
flow_push = Expression (("force", "0.0"))
flow_push.force = 0.05
return [flow_push]

def neumann_boundaries(self):
everywhere = "on_boundary"
return [everywhere]

def material_model(self):

material = MooneyRivlin([6.169 , 10.15])
return material

Figure 24.15: Problem definition: A hy-
perelastic dolphin being pushed to the
right.

Python code
problem = FishyFlow ()

dt = problem.time_step ()
T = problem.end_time ()

t = dt
while t <= T:

problem.step(dt)
problem.update ()
t = t + dt

Figure 24.16: Stepping through time in
an external time loop. step steps the
problem forward by one time step, and
update updates the values of all time-
dependent variables to the current time.

capable of performing dynamic calculations under entirely Neumann boundary conditions. In addition,
this calculation points out that the framework can seamlessly handle problems in two dimensions as well.

The problem is specified in the user-created class FishyFlow derived from Hyperelasticity. There
is nothing new to note in the code listing for this problem (Figure 24.15), other than the fact that we
now specify Neumann boundary conditions. The specification listing is not very long because CBC.Twist
assumes meaningful default values for unspecified information.

To demonstrate one final piece of functionality of CBC.Twist, we don’t solve the problem in the same
manner as we did the first two examples; that is, we do not instantiate an object of class FishyFlow and
call its solve method. Instead, we set up our own time loop and manually step through time using the
step method. This is shown in Figure 24.16.

The advantage of solving the problem in this manner is that, now, one has more control over calculations
in CBC.Twist. For example, rather than just fixing a traction force on the surface of the dolphin to mimic
the effect of flow field, one can instead solve at each time step an actual flow field and use it to correctly
drive the solid mechanics. This functionality of CBC.Twist is used in a following chapter on adaptive
methods for fluid-structure interaction (??). In that work, the fluid-structure problem is solved using a
staggered approach with the solid mechanics equation being solved by CBC.Twist. An external time loop

398 automated scientific computing

(a) t = 0.0 s (b) t = 0.125 s (c) t = 0.250 s

(d) t = 0.375 s (e) t = 0.500 s (f) t = 0.625 s

(g) t = 0.750 s (h) t = 0.875 s (i) t = 1.000 s

Figure 24.17: The motion of a hypere-
lastic dolphin being forced to the right.
Careful observation of the tail fin shows
deformation of the dolphin in addition
to its overall motion toward the right.

similar to the one in Figure 24.16 is set up to individually step through the fluid problem, the solid problem
and a mesh equation; a process which is iterated until convergence is reached at each time step. This
process involves the systematic transfer of relevant information (such as fluid loading) from other problems
to CBC.Twist.

But returning to our current example, Figure 24.17 shows time snapshots of the motion of the dolphin
over the course of the computation. Notice that the fish deforms elastically as it tumbles toward the right.

24.4 Conclusion

This chapter presented an overview of CBC.Twist, an automated computational framework for nonlinear
elasticity. Beginning with elements of classical nonlinear elasticity theory to motivate its design, the
discourse took a closer look at the algorithms underlying CBC.Twist’s implementation. The chapter
concluded with some examples, offering a tutorial-like description of how the framework can be used in
practice to solve problems.

The discussion aimed to highlight a central feature of CBC.Twist: the ease with which different material
models can be defined and used. This feature makes CBC.Twist immediately applicable to a number of
real-world problems in engineering, especially those pertaining to polymer and biological tissue mechanics.

CBC.Twist is a collaboratively developed open source project (released under the GNU GPL) that is
freely available from its source repository at https://launchpad.net/cbc.solve/. Its only dependency is
a working FEniCS installation. CBC.Twist is released with the goal that it will allow users to easily solve
problems in nonlinear elasticity as part of answering specific questions through computational modeling.
Everyone is encouraged to fetch and try it. Users are also encouraged to modify the code to better suit
their own purposes, and contribute changes that they think are useful to the community. Along these lines,
some possible ideas for extending the framework include:

• Implementing other specific material models

• Allowing for bodies composed of multiple materials

• Support for (nearly) incompressible materials

https://launchpad.net/cbc.solve/

a computational framework for nonlinear elasticity 399

• Support for anisotropic materials

• Support for viscoelastic materials

• Goal-oriented adaptivity

Contributions toward these (or other useful) extensions are welcome.

